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COLLECTION, PROCESSING, AND OUTPUT
OF FLIGHT INFORMATION METHOD,
SYSTEM, AND APPARATUS

FIELD

The present disclosure relates to a computing device, in
particular to a computing device to use a machine learning
neural network to at least one of capture flight data from
visual analysis of a flight instrument in an aircraft, to
compare a time-series of flight data to a standard of a flight
maneuver, and to output an interpretation of the time-series
of the flight data relative to the standard of the flight
maneuver.

BACKGROUND

There may be a significant shortage of aircraft pilots in
coming years, which may generate significant demand for
trained pilots. Aircraft pilot training typically occurs through
flight time in an aircraft with an instructor and through use
of simulators, with or without an instructor. Simulators
allow instructors and students to review flight maneuvers to,
for example, check whether maneuvers were conducted
within standards.

Simulators can range from 2-dimensional simulations on
a computer screen to complex and expensive simulators
which include a gimbaled “cockpit” which can simulate roll,
pitch, and yaw and which can project real-life video imagery
onto interior screens. However, even complex simulators
cannot simulate gross acceleration and will never entirely
replace practical hands-on training. In addition, many small
aircraft are too inexpensive to justify the cost of a complex
simulator.

When an instructor is in an aircraft with a student, the
instructor may have to pay attention to multiple information
sources, including aircraft flight data, as well as what the
student is doing. The instructor may not have a historical
record of what the student did, apart from flight data
recorders and cockpit voice recorders, which are often not
able to provide historical information. Instructors may
record video of flight training sessions, though it may
require a significant amount of time to review a video, parse
what happened, when, and the video may not capture
information from the flight instruments.

Acquisition of aircraft flight data typically occurs through
systems which are built into aircraft; e.g. Flight data record-
ers and or cockpit voice recorders record aircraft flight data
and audio from cockpits. Typically, this information is
recorded to document an aircraft’s flight history, as may be
relevant following an accident or a non-standard procedure.
As noted, this information may or may not be available to
support training.

Interfacing with aircraft flight data recorders and with
flight instruments is not trivial, in large part because they
must be reliable and because information they capture must
be kept secure.

In addition, aircraft commonly operate for decades; non-
standard or heterogeneous dials, gauges, and instruments
may be installed over time.

Needed is a method, system, and apparatus to acquire
aircraft flight data through visual analysis of flight instru-
ments by a machine learning neural network, without elec-
trical connection to either flight data recorders nor flight
instruments; furthermore, needed is a method, system, and
apparatus to compare aircraft flight data relative to a stan-
dard of a flight maneuver, with minimal or no human input;
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needed is a method, system, and apparatus to output a
visualization of aircraft flight data and or analysis of aircraft
flight data; needed is a method system, and apparatus to
acquire aircraft flight data, programmatically analyze air-
craft flight data, and provide aircraft training to a prospective
aircraft pilot.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is first oblique perspective illustration of an
aircraft cockpit comprising a flight information runtime
computer device, incorporated with teachings of the present
disclosure, according to some embodiments.

FIG. 1B is second oblique perspective illustration of the
aircraft cockpit comprising the flight information runtime
computer device of FIG. 1A, incorporated with teachings of
the present disclosure, according to some embodiments.

FIG. 2A is third oblique perspective illustration of a detail
of the aircraft cockpit of FIG. 1A comprising an aircraft
flight instrument.

FIG. 2B is an illustration of a perspective transformation
of the aircraft flight instrument of FIG. 2A by a runtime data
capture module of the present disclosure, incorporated with
teachings of the present disclosure, according to some
embodiments.

FIG. 3 is an illustration of the perspective transformation
of'the aircraft flight instrument of FIG. 2B, with emphasis on
portions of the aircraft flight instrument processed by the
runtime data capture module of the present disclosure,
according to some embodiments.

FIG. 4 is an illustration of a detail of the perspective
transformation of the aircraft flight instrument of FIG. 2B,
with emphasis on portions of the aircraft flight instrument
processed by the runtime data capture module of the present
disclosure and flight data captured thereby, according to
some embodiments.

FIG. 5 is an illustration of a visualization of flight data
obtained from the runtime data capture module of the
present disclosure and from an inertial measurement unit of
the flight information runtime computer device of the pres-
ent disclosure, according to some embodiments.

FIG. 6 is a network and device diagram illustrating an
example of a flight information machine learning computer
device, a flight information machine learning computer
device datastore, an aircraft, a flight information runtime
computer device, and a network incorporated with teachings
of the present disclosure, according to some embodiments.

FIG. 7 is a functional block diagram illustrating an
example of the flight information machine learning com-
puter device of FIG. 1, incorporated with teachings of the
present disclosure, according to some embodiments.

FIG. 8 is a functional block diagram illustrating an
example of a flight information machine learning computer
device datastore incorporated with teachings of the present
disclosure, according to some embodiments.

FIG. 9 is a flow diagram illustrating an example of a
method performed by a data capture neural training module,
incorporated with teachings of the present disclosure,
according to some embodiments.

FIG. 10 is a flow diagram illustrating an example of a
method performed by a data analysis neural training module,
incorporated with teachings of the present disclosure,
according to some embodiments.

FIG. 11 is a flow diagram illustrating an example of a
method performed by a runtime generation module, incor-
porated with teachings of the present disclosure, according
to some embodiments.
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FIG. 12 is a flow diagram illustrating an example of a
method performed by a runtime data capture module, incor-
porated with teachings of the present disclosure, according
to some embodiments.

FIG. 13 is a flow diagram illustrating an example of a
method performed by a runtime data analysis module,
incorporated with teachings of the present disclosure,
according to some embodiments.

FIG. 14 illustrates output of a visualization module,
incorporated with teachings of the present disclosure,
according to some embodiments.

DETAILED DESCRIPTION

In addition to other locations, defined terms may be found
at the end of this Detailed Description.

In overview, this disclosure relates to an apparatus and
methods performed by and in a runtime computer device
apparatus, referred to herein as flight information runtime
computer system 105, to acquire aircraft flight data through
visual analysis of flight instruments with a data capture
neural network, to compare aircraft flight data to a standard
of'a flight maneuver with a data analysis neural network with
minimal or no human input, to output a visualization of
aircraft flight data and or analysis of aircraft flight data, and
to acquire aircraft flight data, programmatically analyze
aircraft flight data, and provide aircraft training to a pro-
spective aircraft pilot. The data capture neural network and
data analysis neural networks may be trained; included in
this disclosure are an apparatus and methods performed in a
neural network training computer device apparatus, referred
to herein as flight information machine learning computer
700, to train the data capture neural network and the data
analysis neural network.

Flight information runtime computer system 105 and
flight information machine learning computer device 700
may include hardware acceleration module(s) to accelerate
the performance of modules by hardware of these appara-
tuses, for example, to allow the modules to operate in what
a user perceives as real time, to produce enhanced results in
a short period of time, or to reduce the time and cost required
to perform neural network training.

Flight information machine learning computer device 700
may comprise data capture neural training module 900.
When executed, data capture neural training module 900
may train data capture neural network 815 to capture flight
data from neural network analysis of images comprising
flight instruments. Flight information machine learning
computer device 700 may comprise data analysis neural
training module 1000. When executed, data analysis neural
training module 1000 may train flight analysis neural net-
work 820 to compare time-series flight data to a standard of
a flight maneuver and output an interpretation of the time-
series of the flight data relative to the standard of the flight
maneuver.

Flight information machine learning computer device 700
may perform runtime generation module 1100 to package
data capture neural network 815 with a hardware interface
for flight information runtime computer system 105 and to
create runtime data capture module 1200. Flight information
machine learning computer device 700 may perform runtime
generation module 1100 to package flight analysis neural
network 820 with a hardware interface for flight information
runtime computer system 105 and to create runtime data
analysis module 1300.

The hardware interfaces prepared by runtime generation
module 1100 may allow flight information runtime com-
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puter system 105 and modules performed by flight informa-
tion runtime computer system 105, e.g. runtime data capture
module 1200 and runtime data analysis module 1300, to
interface with one or more humans, to interface with other
processes, and to interface with hardware input devices. For
example, the hardware interface prepared by runtime gen-
eration module 1100 may allow runtime data capture module
1200 to obtain images, e.g. photographs, or a sequence of
images, e.g. video, from a camera in flight information
runtime computer system 105 in an aircraft, so that runtime
data capture module 1200 can process the images with
runtime data capture neural network 815 and determine
flight data values from flight instruments in the images. For
example, the hardware interface prepared by runtime gen-
eration module 1100 may allow runtime data capture module
1200 to save comparative data, e.g. from an inertial mea-
surement unit (“IMU”), an altimeter, a global positioning
system (“GPS”) receiver, or an inclinometer, e.g. from
comparative data source 115, to one or more comparative
date 825 records so that runtime data capture module 1200
may compare the comparative data 825 to the neural net-
work flight data 805 records and reject or correct outliers in
neural network flight data 805 records. For example, the
hardware interface prepared by runtime generation module
1100 may allow runtime data analysis module 1300 to obtain
time-series flight data from, for example, runtime data
capture module 1200, so that runtime data analysis module
1300 may process it with runtime flight analysis neural
network 820 to compare time-series flight data to the stan-
dard of the flight maneuver and output an interpretation of
the time-series of the flight data relative to the standard of
the flight maneuver. The hardware interface may further
allow human input into modules of flight information run-
time computer system 105, such as into visualization mod-
ule 110, such as to allow human selection of an aircraft in
which a flight maneuver is to be performed, to allow human
selection of the standard flight maneuver which is or was
performed, to allow human interaction with imaging (such
as to confirm that a flight instrument is imaged by a camera),
to allow human review of output of the interpretation of the
time-series of the flight data relative to the standard of the
flight maneuver, such as for flight training purposes, and the
like.

In this way, flight information machine learning computer
device 700 and flight information runtime computer system
105 and modules thereof may be trained to and may acquire
aircraft flight data through visual analysis of flight instru-
ments with a data capture neural network, compare aircraft
flight data to a standard of a flight maneuver with a data
analysis neural network with minimal or no human input,
output a visualization of aircraft flight data and or analysis
of aircraft flight data, and or may acquire aircraft flight data,
programmatically analyze aircraft flight data, and provide
aircraft training to a prospective aircraft pilot, with minimal
or reduced demand on a human trainer.

FIG. 1A is first oblique perspective illustration of aircraft
cockpit 100 comprising flight information runtime computer
device 105, incorporated with teachings of the present
disclosure, according to some embodiments. FIG. 1B is
second oblique perspective illustration of aircraft cockpit
100 comprising flight information runtime computer device
105 of FIG. 1A, incorporated with teachings of the present
disclosure, according to some embodiments.

As illustrated, flight information runtime computer device
105 may be mounted within aircraft cockpit 100 with a view
of instrument panel 130 in aircraft cockpit 100. The mount-
ing location may be on a ceiling of aircraft cockpit 100, may
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be on a side-panel of aircraft cockpit 100, or in another
location. As illustrated, flight information runtime computer
device 105 may comprise one or more cameras, such as
camera 125, with a view of instrument panel 130. Instrument
panel 130 may comprise analog instruments, digital instru-
ments, switches, and the like. In embodiments, camera 125
may be separate from flight information runtime computer
device 105, may be provided with an independent power
supply, and may be provided with wireline or wireless data
connection to flight information runtime computer device
105 and modules thereof. In embodiments, one or more
mirrors may provide flight information runtime computer
device 105 and or cameras thereof with a view of instrument
panel 130. Sightlines 135 from camera 125 to instrument
panel 130 indicate an area of interest within instrument
panel 130 and do not necessarily indicate the complete field
of view of camera 125 nor an image taken by camera 125.

As illustrated, flight information runtime computer device
105 may comprise one or more computer processor and
memory 110. Computer processor and memory 110 are
similar to flight information machine learning computer
device 700 and flight information machine learning com-
puter datastore 800, described herein, though may comprise
a subset of modules thereof and may comprise additional
modules, such as modules of a hardware interface prepared
by runtime generation module 1100 which may be specific
to hardware of flight information runtime computer device
105. Discussion herein of computer hardware of flight
information machine learning computer device 700 and of
flight information machine learning computer datastore 800
should be understood to describe computer processor and
memory 110; e.g. computer processor and memory 110 may
be synonymous with flight information machine learning
computer device 700 and flight information machine learn-
ing computer datastore 800; e.g. where reference is made to
records in flight information machine learning computer
datastore 800, such records may be in computer processor
and memory 110; e.g. where reference is made to modules
in flight information machine learning computer device 700,
such modules may be in computer processor and memory
110. Some of computer processor and memory 110 may be
provided remotely, via a wireless connection.

Computer processor and memory 110 may comprise
runtime data capture module 1200 and runtime data analysis
module 1300 in memory. Runtime data capture module 1200
and runtime data analysis module 1300 may be performed
by computer processor and memory 110.

Flight information runtime computer device 105 may
comprise comparative data source 115. Comparative data
source 115 may comprise, for example, an IMU, an altim-
eter, a GPS receiver, an inclinometer, or the like. Compara-
tive data source 115 may provide information to, for
example, runtime data capture module 1200, as described
further herein.

As illustrated, flight information runtime computer device
105 may comprise power source 120. Power source 120 may
comprise batteries, an electrical connection to an electrical
system of the aircraft, power conditioning circuits, and the
like. Power source 120 may be rechargeable. Power source
120 may be removable from flight information runtime
computer device 105.

FIG. 2A is oblique perspective illustration of image 200
of flight panel 130 in aircraft cockpit 100 of FIG. 1A
comprising aircraft flight instrument 211 (and others, not
labeled); image 200 may have been obtained by camera 125;
an image obtained by camera 125 may have a different size,
shape, and field of view than as illustrated in FIG. 2A. In
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addition to showing a visual perspective which camera 125
may have of flight panel 130, image 200 further illustrates
that flight panel 130 and instrument cluster 210 thereof may
be fitted with one or more fiducial markers, e.g. Fiducial
marker 205A, fiducial marker 205B, fiducial marker 205C,
and fiducial marker 205D. As discussed herein, fiducial
marker(s) may be used to assist with a perspective transfor-
mation of image 200 and or to assist with identification of
flight instruments in image 200. Fiducial markers may be
square, rectangular, or other shapes and may act as reference
points or locations; fiducial markers may comprise encode
information, as in a “QR” code or an ArUco code. As noted,
instrument cluster 210 may comprise analog instruments,
digital instruments, switches, dials, and the like. Fiducial
markers may be located with respect to instrument cluster
210 and or with respect to individual flight instruments 211.

FIG. 2B is an illustration of a portion of a perspective
transformation 220 of image 200 of FIG. 2A. As described
herein, perspective transformation 220 of image 200 may be
obtained or produced by runtime data capture module 1200.
As discussed herein, perspective transformation 220 may
flatten image 200 and otherwise remove perspective and
foreshortening, which may aid runtime data capture module
1200 in identifying flight instruments and flight data in
image 200. Please see the discussion herein regarding run-
time data capture module 1200. Because data capture neural
network 815 of runtime data capture module 1200 is trained
by data capture neural training module 900 on images such
as image 200, please also see the discussion herein regarding
data capture neural training module 900.

FIG. 3 is an illustration of perspective transformation 220
of FIG. 2B, with emphasis on portions of the aircraft flight
instrument processed by runtime data capture module 1200
of the present disclosure, according to some embodiments.
The emphasized portions may comprise flight instrument
object 305, flight instrument object 310, flight instrument
object 315, and flight instrument object 320, identified by
runtime data capture module 1200 as flight instrument
objects within perspective transformation 220 of image 200.
The flight instruments underlying these flight instrument
objects, e.g. flight instrument 211, may output, for example,
engine status information, brake status information, com-
pass heading information, altitude, height above ground,
artificial horizon information, flight control surface infor-
mation (e.g. aileron trim, rudder setting, etc.), aircraft status
information, and the like. The emphasized portions in FIG.
3 and other of the figures herein are by way of example, only.
Please see the discussion herein regarding runtime data
capture module 1200. Because data capture neural network
815 of runtime data capture module 1200 is trained by data
capture neural training module 900 on images such as image
200, please also see the discussion herein regarding data
capture neural training module 900.

FIG. 4 is an illustration of a detail of flight instrument 320
of perspective transformation 220 of image 200 of aircraft
instrument panel 130 of FIG. 2B. As discussed herein,
number “310”, labeled as element 410 in FIG. 4, may be
identified as a value corresponding to flight instrument
object value 405, in flight instrument object 320, by runtime
data capture module 1200. Number “310” may be stored by
runtime data capture module 1200 in one or more neural
network flight data 805 records. Please see the discussion
herein regarding runtime data capture module 1200.
Because data capture neural network 815 of runtime data
capture module 1200 is trained by data capture neural
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training module 900 on images such as image 200, please
also see the discussion herein regarding data capture neural
training module 900.

FIG. 5 is a graph 500 comprising neural network flight
data 520, comparative data 515, and corrected flight data
525.

As discussed herein, runtime data capture module 1200 of
flight information runtime computer system 105 may obtain
neural network flight data 520 from data capture neural
network 815; runtime data capture module 1200 may store
neural network flight data 520 in one or more neural network
flight data 805 records. As discussed herein, runtime data
capture module 1200 may obtain comparative data 515 from
comparative data source 115 of flight information runtime
computer device 105; runtime data capture module 1200
may store comparative data 515 in one or more comparative
data 825 records.

In graph 500, axis 510 represents airspeed and axis 505
represents time. Comparative data 515 from comparative
data source 115 is illustrated as a continuous line, though it
may be discontinuous, while neural network flight data
520A, neural network flight data 520B, neural network flight
data 520C and other unlabeled checkered dots (referred to
together as neural network flight data 520) represent flight
data determined by data capture neural network 815. Neural
network flight data 520B and neural network flight data
520C illustrate that flight data from data capture neural
network 815 may, in moments, deviate significantly from
time adjacent values in neural network flight data 805
records as well as from comparative data 515 from com-
parative data source 115. As discussed herein, neural net-
work flight data 520 may be obtained from visual analysis of
flight instruments of an aircraft, e.g. from flight instrument
211.

The flight instruments of the aircraft may be more reliable
than comparative data 515 from comparative data source
115. Neural network flight data 805 determined by runtime
data capture module 1200 using runtime data capture neural
network 815 may generally correspond very closely to the
true output of the aircraft’s flight instruments, notwithstand-
ing periodic errors. Please compare line 515 to neural
network flight data 520. However, in moments in which
neural network flight data 520 produces an error, e.g. at
neural network flight data 520B or neural network flight data
520C, comparative data source 115 can be used, e.g. by
runtime data capture module 1200, to generate a correction,
e.g. corrected flight data 525A and corrected flight data
525B (referred to together as corrected flight data 525). As
discussed herein in relation to runtime data capture module
1200, the value of corrected flight data 525A and corrected
flight data 525B may be determined by runtime data capture
module 1200 through use of, for example, a filter, such as a
Kalman filter. Combined, corrected flight data 525 and
neural network flight data 520 may be referred to as cor-
rected neural network flight data.

Corrected neural network flight data may be output in a
hardware user interface and or a runtime application, such as
visualization module 110. An example of corrected neural
network flight data output in a visualization module, such as
visualization module 110, may be seen in FIG. 14.

FIG. 6 is a network and device diagram illustrating an
example of flight information machine learning computer
device 700, flight information machine learning computer
device datastore 800, aircraft 610, flight information runtime
computer device 105, and network 650 incorporated with
teachings of the present disclosure, according to some
embodiments.
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Flight information machine learning computer device
datastore 800 illustrated in FIG. 6 may be connected with
network 650 and or flight information machine learning
computer device 700, described further in relation to FIG. 7.

Flight information machine learning computer device 700
is illustrated as connecting to flight information machine
learning computer device datastore 800. Flight information
machine learning computer device datastore 800 is
described further, herein, though, generally, should be
understood as a datastore used by flight information machine
learning computer device 700.

Network 650 may comprise computers, network connec-
tions among the computers, and software routines to enable
communication between the computers over the network
connections. Examples of Network 650 comprise an Ether-
net network, the Internet, and/or a wireless network, such as
a GSM, TDMA, CDMA, EDGE, HSPA, LTE or other
network provided by a wireless service provider. Connection
to Network 650 may be via a Wi-Fi connection. More than
one network may be involved in a communication session
between the illustrated devices. Connection to Network 650
may require that the computers execute software routines
which enable, for example, the seven layers of the OSI
model of computer networking or equivalent in a wireless
phone network.

FIG. 7 is a functional block diagram illustrating an
example of flight information machine learning computer
device 700, incorporated with teachings of the present
disclosure, according to some embodiments. Flight infor-
mation machine learning computer device 700 may include
chipset 755. Chipset 755 may include processor 715, input/
output (I/O) port(s) and peripheral devices, such as output
740 and input 745, and network interface 730, and computer
device memory 750, all interconnected via bus 720. Net-
work interface 730 may be utilized to form connections with
network 650, with flight information machine learning com-
puter device datastore 800, or to form device-to-device
connections with other computers.

Chipset 755 may include communication components
and/or paths, e.g., buses 720, that couple processor 715 to
peripheral devices, such as, for example, output 740 and
input 745, which may be connected via [/O ports. Processor
715 may include one or more execution cores (CPUs). For
example, chipset 755 may also include a peripheral control-
ler hub (PCH) (not shown). In another example, chipset 755
may also include a sensors hub (not shown). Input 745 and
output 740 may include, for example, user interface
device(s) including a display, a touch-screen display, printer,
keypad, keyboard, etc., sensor(s) including accelerometer,
global positioning system (GPS), gyroscope, etc., commu-
nication logic, wired and/or wireless, storage device(s)
including hard disk drives, solid-state drives, removable
storage media, etc. I/O ports for input 745 and output 740
may be configured to transmit and/or receive commands
and/or data according to one or more communications
protocols. For example, one or more of the [/O ports may
comply and/or be compatible with a universal serial bus
(USB) protocol, peripheral component interconnect (PCI)
protocol (e.g., PCI express (PCle)), or the like.

Hardware acceleration module 210 may provide hardware
acceleration of various functions otherwise performed by
data capture neural training module 900, data analysis neural
training module 1000, runtime generation module 1100,
runtime data capture module 1200, runtime data analysis
module 1300, and visualization module 110. Hardware
acceleration module may be provided by, for example,
Integrated Performance Primitives software library by Intel
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Corporation, as may be executed by an Intel (or other
compatible) chip, and which may implement, for example,
a library of programming functions involved with real time
computer vision and machine learning systems. Such a
library includes, for example, OpenCV. OpenCV includes,
for example, application areas including 2D and 3D feature
toolkits, egomotion estimation, facial recognition, gesture
recognition, human-computer interaction, mobile robotics,
motion understanding, object identification, segmentation
and recognition, stereopsis stereo vision (including depth
perception from two cameras), structure from motion,
motion tracking, and augmented reality. OpenCV also
includes a statistical machine learning library including
boosting, decision tree learning, gradient boosting trees,
expectation-maximization algorithms, k-nearest neighbor
algorithm, naive Bayes classifier, artificial neural networks,
random forest, and a support vector machine.

Hardware acceleration module may be provided by, for
example, NVIDIA® CUDA-X libraries, tools, and technolo-
gies built on NVIDIA CUDA® technologies. Such libraries
may comprise, for example, math libraries, parallel algo-
rithms, image and video libraries, communication libraries,
deep learning libraries, and partner libraries. Math libraries
may comprise, for example, a GPU-accelerated basic linear
algebra (BLAS) library, a GPU-accelerated library for Fast
Fourier Transforms, a GPU-accelerated standard mathemati-
cal function library, a GPU-accelerated random number
generation (RNG), GPU-accelerated dense and sparse direct
solvers, GPU-accelerated BLAS for sparse matrices, a GPU-
accelerated tensor linear algebra library, and a GPU-accel-
erated linear solvers for simulations and implicit unstruc-
tured methods. Parallel algorithm libraries may comprise,
for example a GPU-accelerated library of C++ parallel
algorithms and data structures. Image and video libraries
may comprise, for example, a GPU-accelerated library for
JPEG decoding, GPU-accelerated image, video, and signal
processing functions, a set of APIs, samples, and documen-
tation for hardware accelerated video encode and decode on
various operating systems, and a software developer kit
which exposes hardware capability of NVIDIA TURING™
GPUs dedicated to computing relative motion of pixels
between images. Communication libraries may comprise a
standard for GPU memory, with extensions for improved
performance on GPUs, an open-source library for fast multi-
GPU, multi-node communications that maximize bandwidth
while maintaining low latency. Deep learning libraries may
comprise, for example, a GPU-accelerated library of primi-
tives for deep neural networks, a deep learning inference
optimizer and runtime for product deployment, a real-time
streaming analytics toolkit for Al-based video understanding
and multi-sensor processing, and an open-source library for
decoding and augmenting images and videos to accelerate
deep learning applications. Partner libraries may comprise,
for example, OpenCV, FFmpeg, ArrayFire, Magma, IMSL
Fortan Numerical Library, Gunrock, Cholmod, Triton Ocean
SDK, CUVIIib, and others.

In embodiments, hardware acceleration module 210 may
be or comprise a programmed field programmable gate array
(“FPGA”), i.e., a FPGA comprising gate arrays configured
with a bit stream to embody the logic of the hardware
accelerated function (equivalent to the logic provided by the
executable instructions of a software embodiment of the
function). In embodiments, hardware acceleration module
210 may also or alternatively include components of or
supporting computer device memory 750.

Computer device memory 750 may generally comprise a
random-access memory (“RAM™), a read only memory
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(“ROM”), and a permanent mass storage device, such as a
disk drive or SDRAM (synchronous dynamic random-ac-
cess memory). Computer device memory 750 may store
program code for modules and/or software routines, such as,
for example, hardware acceleration module 210, data cap-
ture neural training module 900, data analysis neural train-
ing module 1000, runtime generation module 1100, runtime
data capture module 1200, runtime data analysis module
1300, and visualization module 110.

Computer device memory 750 may also store operating
system 780. These software components may be loaded
from a non-transient computer readable storage medium 796
into computer device memory 750 using a drive mechanism
associated with a non-transient computer readable storage
medium 796, such as a floppy disc, tape, DVD/CD-ROM
drive, memory card, or other like storage medium. In some
embodiments, software components may also or instead be
loaded via a mechanism other than a drive mechanism and
computer readable storage medium 796 (e.g., via network
interface 730).

Computer device memory 750 is also illustrated as com-
prising kernel 785, kernel space 795, user space 790, user
protected address space 760, and flight information machine
learning computer device datastore 800 (illustrated and
discussed further in relation to FIG. 8).

Computer device memory 750 may store one or more
process 765 (i.e., executing software application(s)). Process
765 may be stored in user space 790. Process 765 may
include one or more other process 765a . . . 765n. One or
more process 765 may execute generally in parallel, i.e., as
a plurality of processes and/or a plurality of threads.

Computer device memory 750 is further illustrated as
storing operating system 780 and/or kernel 785. The oper-
ating system 780 and/or kernel 785 may be stored in kernel
space 795. In some embodiments, operating system 780 may
include kernel 785. Operating system 780 and/or kernel 785
may attempt to protect kernel space 795 and prevent access
by certain of process 765a . . . 765n.

Kernel 785 may be configured to provide an interface
between user processes and circuitry associated with flight
information machine learning computer device 700. In other
words, kernel 785 may be configured to manage access to
processor 715, chipset 755, /O ports and peripheral devices
by process 765. Kernel 785 may include one or more drivers
configured to manage and/or communicate with elements of
flight information machine learning computer device 700
(i.e., processor 715, chipset 755, /O ports and peripheral
devices).

Flight information machine learning computer device 700
may also comprise or communicate via bus 720 and/or
network interface 730 with flight information machine learn-
ing computer device datastore 800, illustrated and discussed
further in relation to FIG. 8. In various embodiments, bus
720 may comprise a high-speed serial bus, and network
interface 730 may be coupled to a storage area network
(“SAN”), a high speed wired or wireless network, and/or via
other suitable communication technology. Flight informa-
tion machine learning computer device 700 may, in some
embodiments, include many more components than as illus-
trated. However, it is not necessary that all components be
shown in order to disclose an illustrative embodiment.

FIG. 8 is a functional block diagram of the flight infor-
mation machine learning computer device datastore 800
illustrated in the computer device of FIG. 7, according to
some embodiments. The components of flight information
machine learning computer device datastore 800 may
include data groups used by modules and/or routines, e.g,
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flight data 305, flight maneuver 310, runtime data capture
neural network 315, runtime flight analysis neural network
320, comparative data 325, and log 830. The data groups
used by modules or routines illustrated in FIG. 8 may be
represented by a cell in a column or a value separated from
other values in a defined structure in a digital document or
file. Though referred to herein as individual records or
entries, the records may comprise more than one database
entry. The database entries may be, represent, or encode
numbers, numerical operators, binary values, logical values,
text, string operators, references to other database entries,
joins, conditional logic, tests, and similar.

The components of flight information machine learning
computer device datastore 800 are discussed further herein
in the discussion of other of the Figures.

FIG. 9 is a flow diagram illustrating an example of a
method performed by data capture neural training module
900, incorporated with teachings of the present disclosure,
according to some embodiments. This module may be
performed by or with the assistance of a hardware accelera-
tor, such as hardware acceleration module 210. This module
may be performed by, for example, flight information
machine learning computer device 700.

At block 905, data capture neural training module 900
may obtain a training dataset. The training dataset may
comprise images comprising objects, flight instruments, and
flight data objects, and flight instrument object values which
have been labeled. The images in the training dataset may be
similar to image 200 and or perspective transformation 220
of' image 200. The training dataset may have been subject to
a perspective transformation, as may be approximated
through affine or bi-linear transformations or the like. The
labels may identify different objects, different flight instru-
ment objects, e.g. flight instrument object 310 to flight
instrument object 320 (which may be different types of flight
instruments), and different flight instrument object values
which may be output by different of the flight instrument
objects, e.g. flight instrument object value 405, and different
numerical, text, or other data values of flight instrument
objects, e.g. element 410 of FIG. 4, in which “310” is a value
corresponding to flight instrument object value 405. The
training dataset may be obtained from, for example, one or
more flight instrument training data 835 records.

At block 910, data capture neural training module 900
may select mapping function(s) of an object detection neural
network (“ODNN”), e.g. of a convolutional neural network
(“CNN”), e.g. a region-based CNN.

At block 915, data capture neural training module 900
may scale the ODNN, wherein the scale may comprise
depth, width, and resolution. Depth may comprise, for
example, a number of convolutional layers in the ODNN.
Width may comprise, for example, a number of channels in
each convolutional layer in the ODNN. Resolution may
comprise, for example, the resolution of images passed to
the ODNN. Width, for example, may be set based on
computer resources, such as resources in flight information
runtime computer system 105.

At block 920, data capture neural training module 900
may initialize weights of an optimizer used on a loss
function of the ODNN. The weights may be initialized at, for
example, small random values.

At block 925, data capture neural training module 900
may provide the ODNN with a portion of the training dataset
of block 905. The images of the training dataset may have
been processed with a perspective transformation, as may be
approximated through affine or bi-linear transformations.
The images may comprise multiple, different, flight instru-
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ments. The images may comprise objects, flight instrument
objects in the objects, and flight instrument object values in
the flight instrument objects, including such objects which
have been labeled, per block 905.

At block 930, data capture neural training module 900
may test the ODNN on untrained training data, e.g. on a
portion of the training dataset of block 905 not previously
provided during training at block 925, to determine whether
the ODNN is returning acceptable results.

At decision block 935, data capture neural training mod-
ule 900 may determine whether the ODNN produces an
acceptable error rate in rejecting non-flight instrument
objects, in identification of flight instrument objects, and in
identification of flight instrument object values in the
untrained data. An acceptable error rate may be, for
example, less than ten percent.

If negative or equivalent at decision block 935, at block
940, data capture neural training module 900 may adjust
weights of the optimizer used on the loss function. Adjust-
ment of weights may be, for example, in proportion to a
derivative of error. If necessary or desirable, the scale of the
CNN may also be adjusted.

At block 945, data capture neural training module 900
may prepare or obtain additional training set data and may
then return to block 925.

At block 950, which may follow decision block 935
following an affirmative or equivalent decision, data capture
neural training module 900 may output a runtime data
capture object detection neural network. The output runtime
data capture object detection neural network may be stored
as, for example, one or more runtime data capture neural
network 815 records.

At block 999, data capture neural training module 900
may conclude and/or return to a module and/or another
process which may have called it.

FIG. 10 is a flow diagram illustrating an example of a
method performed by data analysis neural training module
1000, incorporated with teachings of the present disclosure,
according to some embodiments. This module may be
performed by or with the assistance of a hardware accelera-
tor, such as hardware acceleration module 210. This module
may be performed by, for example, flight information
machine learning computer device 700.

At block 1005, data analysis neural training module 1000
may obtain a training data set comprising time-series flight
instrument data labeled corresponding to indicate perfor-
mance relative to a standard flight maneuver, performed
during the period of the time-series flight instrument data.
The training data set may be obtained from one or more
flight maneuver training data 840 records. The standard
flight maneuver may be with respect to a type of aircraft. The
standard flight maneuver may comprise, for example, slow
flight, power-off stall, power-on stall, steep turn, chandelle,
lazy eight, normal takeoff and climb, crosswind takeoff and
climb, maximum performance takeoff and climb, normal
approach and landing, and the like. The flight maneuver
training data 840 records may comprise tensors of size
(sxbxt), where “s” is the number of flight parameters (alti-
tude, airspeed, and the like) used for training, “b” is the
batch size that determines how many time steps are included
as a labeled chunk of data, and “t” is the number of batch
instances contained in the training matrix. The label data
may comprise a vector of length “t”, such that every training
batch that is an (sxb) matrix is labelled as a single maneuver.

At block 1010, data analysis neural training module 1000
may select a mapping function of a neural network, such as
a neural network which performs well with analysis of
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time-series data, e.g. a recurrent neural network, e.g. of a
long short-term memory architecture recurrent neural net-
work (“LSTM RNN”). The LSTM RNN may comprise, for
example, a cell, an input gate, an output gate, and a forget
gate.

At block 1015, data analysis neural training module 1000
may scale the LSTM RNN. The scale may comprise a depth
and a width. The depth may comprise a number of layers.
The width may comprise a number of channels in each layer.
Scaling may be at least partially according to runtime
execution resources, e.g. in flight information runtime com-
puter system 105.

At block 1020, data analysis neural training module 1000
may initialize weights of an optimizer, e.g. of a gradient-
based optimizer, used on a loss function of the LSTM RNN.
The weights may be initialized at, for example, small
random values.

At block 1025, data analysis neural training module 1000
may feed the LSTM RNN a portion of the training data set
of block 1005, training the LSTM RNN to label flight data
relative to the standard flight maneuvers.

At block 1030, data analysis neural training module 1000
may test the LSTM RNN on untrained training data, e.g. on
a portion of the training dataset of block 1005 not provided
during training at block 1025, to determine whether the
LSTM RNN is returning acceptable results.

At decision block 1035, data analysis neural training
module 1000 may determine whether the LSTM RNN
produces an acceptable error rate in labeling the time-series
flight data relative to untrained training data of block 1030.

If negative or equivalent at decision block 1035, at block
1040, data analysis neural training module 1000 may adjust
weights of the optimizer used on the loss function. Adjust-
ment of weights may be, for example, in proportion to a
derivative of error. If necessary or desirable, the scale of the
LSTM RNN may also be adjusted.

At block 1045, data analysis neural training module 1000
may prepare or obtain additional training set data and may
then return to block 1025.

At block 1050, which may follow decision block 1035
following an affirmative or equivalent decision, data analy-
sis neural training module 1000 may output a runtime data
analysis neural network. The output runtime data analysis
neural network may be stored as, for example, one or more
runtime flight analysis neural network 820 records.

At block 1099, data analysis neural training module 1000
may conclude and/or return to a module and/or another
process which may have called it.

FIG. 11 is a flow diagram illustrating an example of a
method performed by runtime generation module 1100,
incorporated with teachings of the present disclosure,
according to some embodiments. This module may be
performed by or with the assistance of a hardware accelera-
tor, such as hardware acceleration module 210. This module
may be performed by, for example, flight information
machine learning computer device 700.

Opening loop block 1105 to closing loop block 1155 may
iterate over runtime applications to be generated by runtime
generation module 1100, e.g. runtime data capture module
1200 and or runtime data analysis module 1300.

At block 1110, runtime generation module 1100 may
receive, obtain, or generate code for hardware interface or
input/output. The hardware interface may allow hardware
for a runtime execution computer to interface with one or
more humans, to interface with other processes, and to
interface with hardware input and output devices.
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The hardware interfaces prepared or obtained by runtime
generation module 1100 may allow flight information run-
time computer system 105 and modules performed by flight
information runtime computer system 105, e.g. runtime data
capture module 1200 and runtime data analysis module
1300, to interface with one or more humans, to interface
with other processes, and to interface with hardware input
devices. For example, the hardware interface prepared or
obtained by runtime generation module 1100 may allow
runtime data capture module 1200 to obtain images, e.g.
photographs, or a sequence of images, e.g. video, from a
camera in flight information runtime computer system 105
in an aircraft, so that runtime data capture module 1200 can
process the images with data capture neural network 815 and
determine flight data values from flight instruments in the
images. For example, the hardware interface prepared or
obtained by runtime generation module 1100 may allow
runtime data capture module 1200 to obtain comparative
data, e.g. from an inertial measurement unit (“IMU”), an
altimeter, a global positioning system (“GPS”) receiver, or
an inclinometer in the aircraft, so that runtime data capture
module 1200 may compare the comparative data to the flight
data values and reject outliers. For example, the hardware
interface prepared or obtained by runtime generation module
1100 may allow runtime data analysis module 1300 to obtain
time-series flight data from, for example, runtime data
capture module 1200, so that runtime data analysis module
1300 may process it with runtime flight analysis neural
network 820 to compare time-series flight data to the stan-
dard of the flight maneuver and output an interpretation of
the time-series of the flight data relative to the standard of
the flight maneuver.

The hardware interface may be with respect to human-
computer interface, such as a tablet computer, a laptop, or
the like; the hardware interface for the human-computer
interface may comprise audio, visual, keyboard, and tactile
input by the human and output to the human. The hardware
interface for the human-computer interface further allow
human input into modules of flight information runtime
computer system 105, such as into visualization module 110,
such as to allow human selection of an aircraft in which a
flight maneuver is to be performed, to allow human selection
of the standard flight maneuver which is or was performed,
to allow human interaction with imaging (such as to confirm
that a flight instrument is imaged by a camera), to allow
human review of output of the interpretation of the time-
series of the flight data relative to the standard of the flight
maneuver, such as for flight training purposes, and the like.

At block 1115, runtime generation module 1100 may
obtain or receive a runtime neural network corresponding to
the then-current runtime application being prepared. For
example, if preparing runtime data capture module 1200,
runtime generation module 1100 may obtain or receive
runtime data capture neural network 815. For example, if
preparing runtime data analysis module 1300, runtime gen-
eration module 1100 may obtain or receive runtime flight
analysis neural network 820.

At block 1120, runtime generation module 1100 may
configure the hardware interface to receive and output
appropriate data structure(s) with respect to the hardware
execution computer system environment.

At block 1125, runtime generation module 1100 may
output the then-current runtime application.

At decision block 1130, runtime generation module 1100
may test the then-current runtime application, such as in an
emulator of the runtime hardware, such as an emulator of
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flight information runtime computer system 105, and deter-
mine whether an error has occurred.

If affirmative or equivalent at decision block 1130, at
decision block 1135, runtime generation module 1100 may
determine whether the error was an error in the hardware /O
or in the neural network.

If in the hardware /O or equivalent at decision block
1135, then at block 1140 runtime generation module 1100
may debug or have the hardware I/O debugged. Following
block 1140, runtime generation module 1100 may return to
block 1110.

If in the neural network or equivalent at decision block
1135, then at block 1145 runtime generation module 1100
may retrain the neural network, such as by calling data
analysis neural training module 1000. Following block
1145, runtime generation module 1100 may return to block
1115.

If negative or equivalent at decision block 1130, runtime
generation module 1100 may output the then-current run-
time application, such as runtime data capture module 1200
or runtime data analysis module 1300. In embodiments,
runtime generation module 1100 may output the runtime
application with the neural network as a separate module,
e.g. as one or more runtime data capture neural network 815
records or runtime flight analysis neural network 820
records, which may be updated or upgraded separately from
the runtime application.

At block 1199, runtime generation module 1100 may
conclude and/or return to a module and/or another process
which may have called it.

FIG. 12 is a flow diagram illustrating an example of a
method performed by runtime data capture module 1200,
incorporated with teachings of the present disclosure,
according to some embodiments. Runtime data capture
module 1200 may be performed by or with the assistance of
a hardware accelerator, such as hardware acceleration mod-
ule 210. This module may be performed by, for example,
flight information runtime computer system 105 which, as
noted, may be similar to flight information machine learning
computer device 700.

At block 1205, runtime data capture module 1200 may
initialize a hardware I/O for the flight information runtime
computer system, connecting input and output for the com-
puter system with modules of the computer system.

At block 1210, runtime data capture module 1200 may
receive one or more images comprising flight instruments,
such as an image of a cockpit of an aircraft captured by a
camera of flight information runtime computer system 105.
Examples of such an image are illustrated and discussed in
relation to FIG. 2A and image 200. The image may comprise
flight instruments. The image may comprise fiducial mark-
ers. The image may be stored in, for example, one or more
log 830 records.

At block 1215, runtime data capture module 1200 may
perform a perspective transformation of the received
image(s) of block 1210. The perspective transformation may
be, for example, an affine or bi-linear transformation. The
perspective transformation may be aided by, for example,
fiducial markers in the aircraft cockpit.

At block 1220, with an object detection neural network,
such as runtime data capture neural network 815, runtime
data capture module 1200 may identify objects, flight instru-
ment objects, flight instrument data objects, and correspond-
ing values in the image(s). One or more of such objects or
values may be stored by runtime data capture module 1200
in, for example, one or more neural network flight data 805
records.
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At block 1225, runtime data capture module 1200 may
obtain timestamped data from a comparative data source,
such as comparative data source 115, e.g. from an inertial
measurement unit (“IMU”), an altimeter, a global position-
ing system (“GPS”) receiver, or an inclinometer in the
aircraft, for example, from one or more comparative data
825 records stored by runtime data capture module 1200 or
a hardware interface thereof.

At block 1230, runtime data capture module 1200 may
compare or validate values of neural network flight data 805
records of block 1220 relative to at least one of time adjacent
neural network flight data 805 records and or to time
corresponding comparative data 825 records of block 1225.
The comparison or validation may use, for example, a filter,
such as a Kalman filter. The comparison or validation may
be visualized as illustrated in FIG. 5.

In decision block 1235, runtime data capture module 1200
may determine that one or more neural network flight data
805 records are outside of a confidence interval, error
boundary, or the like.

If affirmative or equivalent at decision block 1235, at
block 1240 runtime data capture module 1200 may reject the
outlying neural network flight data 805 record(s) and deter-
mine corrected flight data, such as according to, for example,
the filter and or to the comparative data 825 record.

At block 1299, runtime data capture module 1200 may
conclude and or return to a module and/or another process
which may have called it.

FIG. 13 is a flow diagram illustrating an example of a
method performed by runtime data analysis module 1300,
incorporated with teachings of the present disclosure,
according to some embodiments. Runtime data analysis
module 1300 may be performed by or with the assistance of
a hardware accelerator, such as hardware acceleration mod-
ule 210. This module may be performed by, for example,
flight information runtime computer system 105 which, as
noted, may be similar to flight information machine learning
computer device 700.

At block 1305, runtime data analysis module 1300 may
initialize a hardware I/O for the flight information runtime
computer system, connecting input and output for the com-
puter system with modules of the computer system.

At block 1310, runtime data analysis module 1300 may
obtain a user selection of an aircraft and or a standard flight
maneuver to be performed in the aircraft.

At block 1315, runtime data analysis module 1300 may
obtain timestamped neural network flight data and or cor-
rected flight data from runtime data capture module 1200,
e.g. from neural network flight data 805 records and or
corrected flight data 845 records.

At block 1320, runtime data analysis module 1300 may
feed or provide the timestamped neural network flight data
and or corrected flight data to and or the user selection of the
aircraft and or standard flight maneuver to a neural network
runtime, such as runtime flight analysis neural network 820.
The data, if not already formatted, may be formatted to
conform to the requirements of the neural network, e.g. to be
formatted as one or more vectors, tensors, or the like.

At block 1325, runtime data analysis module 1300 may
obtain analysis from the runtime flight analysis neural
network. The analysis may comprise, for example, labels,
labeled images, and the like produced by runtime flight
analysis neural network 820. The analysis may be stored as,
for example, one or more flight maneuver analysis 850
records.

At block 1330, runtime data analysis module 1300 may
output the analysis of block 1325 in a user interface, such as
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in a table computer, a laptop computer, a smartphone, a
dedicated monitor, and the like.

At block 1399, runtime data analysis module 1300 may
conclude and/or return to a module and/or another process
which may have called it.

FIG. 14 illustrates output 1400 of visualization module
110, incorporated with teachings of the present disclosure,
according to some embodiments. Visualization module 1400
may be performed by or with the assistance of a hardware
accelerator, such as hardware acceleration module 210. This
module may be performed by, for example, flight informa-
tion runtime computer system 105 which, as noted, may be
similar to flight information machine learning computer
device 700.

Output 1400 illustrates that visualization module 100 may
provide feedback regarding performance of a standard flight
maneuver. In the illustrated example, the standard flight
maneuver is a “steep turn”. The feedback may comprise
visualization of performance of the flight maneuver, e.g.
using corrected flight data from runtime data capture module
1200, e.g. in the “Top-Down View” and in the “Altitude
Change over Time”. The feedback visualizations may be
specific to the standard flight maneuver. The feedback may
comprise labels associated with portions of the corrected
flight data, relative to the standard flight maneuver, e.g. the
portions of output 1400 saying, “Maneuver Training Stan-
dards”, “Initial Heading”, etc. These portions may be graphi-
cally linked to the visualization of performance of the flight
maneuver, e.g. if “Initial heading” were graphically linked to
a portion of “Top-Down View”.

In this way, flight information machine learning computer
device 700 and flight information runtime computer system
105 and modules thereof may be trained to and may acquire
aircraft flight data through visual analysis of flight instru-
ments with a data capture neural network, compare aircraft
flight data to a standard of a flight maneuver with a data
analysis neural network with minimal or no human input,
output a visualization of aircraft flight data and or analysis
of aircraft flight data, and or may acquire aircraft flight data,
programmatically analyze aircraft flight data, and provide
aircraft training to a prospective aircraft pilot, with minimal
or reduced demand on a human trainer.

Embodiments of the operations described herein may be
implemented in a computer-readable storage device having
stored thereon instructions that when executed by one or
more processors perform the methods. The processor may
include, for example, a processing unit and/or program-
mable circuitry. The storage device may include a machine
readable storage device including any type of tangible,
non-transitory storage device, for example, any type of disk
including floppy disks, optical disks, compact disk read-only
memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic and static RAMs, erasable
programmable read-only memories (EPROMs), electrically
erasable programmable read-only memories (EEPROMs),
flash memories, magnetic or optical cards, or any type of
storage devices suitable for storing electronic instructions.
USB (Universal serial bus) may comply or be compatible
with Universal Serial Bus Specification, Revision 2.0, pub-
lished by the Universal Serial Bus organization, Apr. 27,
2000, and/or later versions of this specification, for example,
Universal Serial Bus Specification, Revision 3.1, published
Jul. 26, 2013. PCIe may comply or be compatible with PCI
Express 3.0 Base specification, Revision 3.0, published by
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Peripheral Component Interconnect Special Interest Group
(PCI-SIG), November 2010, and/or later and/or related
versions of this specification.

As used in any embodiment herein, the term “logic” may
refer to the logic of the instructions of an app, software,
and/or firmware, and/or the logic embodied into a program-
mable circuitry by a configuration bit stream, to perform any
of the aforementioned operations. Software may be embod-
ied as a software package, code, instructions, instruction sets
and/or data recorded on non-transitory computer readable
storage medium. Firmware may be embodied as code,
instructions or instruction sets and/or data that are hard-
coded (e.g., nonvolatile) in memory devices.

“Circuitry”, as used in any embodiment herein, may
comprise, for example, singly or in any combination, hard-
wired circuitry, programmable circuitry such as FPGA. The
logic may, collectively or individually, be embodied as
circuitry that forms part of a larger system, for example, an
integrated circuit (IC), an application-specific integrated
circuit (ASIC), a system on-chip (SoC), desktop computers,
laptop computers, tablet computers, servers, smart phones,
etc.

In some embodiments, a hardware description language
(HDL) may be used to specify circuit and/or logic imple-
mentation(s) for the various logic and/or circuitry described
herein. For example, in one embodiment the hardware
description language may comply or be compatible with a
very high speed integrated circuits (VHSIC) hardware
description language (VHDL) that may enable semiconduc-
tor fabrication of one or more circuits and/or logic described
herein. The VHDL may comply or be compatible with IEEE
Standard 1076-1987, IEEE Standard 1076.2, IEEE1076.1,
IEEE Draft 3.0 of VHDL-2006, IEEE Draft 4.0 of VHDL-
2008 and/or other versions of the IEEE VHDL standards
and/or other hardware description standards.

As used herein, the term “module” (or “logic”) may refer
to, be part of, or include an Application Specific Integrated
Circuit (ASIC), a System on a Chip (SoC), an electronic
circuit, a programmed programmable circuit (such as, Field
Programmable Gate Array (FPGA)), a processor (shared,
dedicated, or group) and/or memory (shared, dedicated, or
group) or in another computer hardware component or
device that execute one or more software or firmware
programs having executable machine instructions (gener-
ated from an assembler and/or a compiler) or a combination,
a combinational logic circuit, and/or other suitable compo-
nents with logic that provide the described functionality.
Modules may be distinct and independent components inte-
grated by sharing or passing data, or the modules may be
subcomponents of a single module, or be split among several
modules. The components may be processes running on, or
implemented on, a single compute node or distributed
among a plurality of compute nodes running in parallel,
concurrently, sequentially or a combination, as described
more fully in conjunction with the flow diagrams in the
figures.

As used herein, a process corresponds to an instance of a
program, e.g., an application program, executing on a pro-
cessor and a thread corresponds to a portion of the process.
A processor may include one or more execution core(s). The
processor may be configured as one or more socket(s) that
may each include one or more execution core(s).

Following are examples of the foregoing:

Example 1. An apparatus to obtain a flight data through
visual analysis of a flight instrument comprising: a computer
processor and a memory; a runtime data capture module in
the memory to obtain the flight data through visual analysis
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of'the flight instrument, wherein to obtain flight data through
visual analysis of the flight instrument, the computer pro-
cessor is to execute the runtime data capture module to
obtain an image of the flight instrument, identify the flight
instrument in the image, determine the flight data from the
flight instrument in the image and to thereby obtain the flight
data through visual analysis of the flight instrument.

Example 2. The apparatus according to Example 1 or
another Example or example herein, wherein the apparatus
further comprises a camera, wherein the camera is to capture
the image of the flight instrument.

Example 3. The apparatus according to at least one of
Example 1 to Example 2 or another Example or example
herein, wherein to determine the flight data from the flight
instrument in the image, the runtime data capture module is
to process the image with an object detection neural network
to identify the flight instrument in the image and determine
the flight data from the flight instrument in the image.

Example 4. The apparatus according to at least one of
Example 1 to Example 3 or another Example or example
herein, wherein to determine the flight data from the flight
instrument in the image, the runtime data capture module is
to perform a perspective transformation of the image and
identify the flight instrument in the perspective transforma-
tion of the image.

Example 5. The apparatus according to at least one of
Example 1 to Example 4 or another Example or example
herein, wherein the flight instrument comprises a fiducial
marker and wherein the runtime data capture module is to
use the fiducial marker to aid the perspective transformation
of the image.

Example 6. The apparatus according to at least one of
Example 1 to Example 5 or another Example or example
herein, wherein the perspective transformation comprises an
affine or bi-linear transformation.

Example 7. The apparatus according to at least one of
Example 1 to Example 6 or another Example or example
herein, wherein the object detection neural network com-
prises a convolutional neural network.

Example 8. The apparatus according to at least one of
Example 1 to Example 7 or another Example or example
herein, wherein the convolutional neural network comprises
an input, a backbone, a neck, and a head.

Example 9. The apparatus according to at least one of
Example 1 to Example 8 or another Example or example
herein, wherein the runtime data capture module is to size or
reshape the image to match an input size of the object
detection neural network.

Example 10. The apparatus according to at least one of
Example 1 to Example 9 or another Example or example
herein, wherein the image is further converted into a vector.

Example 11. The apparatus according to at least one of
Example 1 to Example 10, wherein to process the image
with the object detection neural network to identify the flight
instrument in the image and determine the flight data from
the flight instrument in the image, the runtime data capture
module is to identify one or more objects in the image, is to
identify the flight instrument as a flight instrument object
among the one or more objects in the image, and is to
identify the flight data as a flight data value object in the
flight instrument object.

Example 12. The apparatus according to at least one of
Example 1 to Example 11, wherein the runtime data capture
module is further to validate the flight data relative to a
comparative flight data obtained from a flight data sensor.

Example 13. The apparatus according to at least one of
Example 1 to Example 12, wherein the apparatus comprises
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the flight data sensor, wherein the runtime data capture
module is to obtain the comparative flight data from the
flight data sensor.

Example 14. The apparatus according to at least one of
Example 1 to Example 13, wherein the flight data sensor
comprises at least one of an inertial measurement unit
(“IMU”), an altimeter, a global positioning system (“GPS”)
receiver, or an inclinometer.

Example 15. The apparatus according to at least one of
Example 1 to Example 14, wherein to validate the flight data
relative to the comparative flight data, the runtime data
capture module is to process a time-series of the flight data
and a time-series of the comparative flight data in a Kalman
filter and reject either a portion of the time-series of flight
data or of the time-series of the comparative flight data
which is outside of a confidence interval.

Example 16. The apparatus according to at least one of
Example 1 to Example 15, further comprising a runtime data
analysis module in the memory to perform an analysis of a
time-series of the flight data.

Example 17. An apparatus to perform an analysis of a
time-series of a flight data comprising: a computer processor
and a memory; a runtime data analysis module in the
memory to perform an analysis of the time-series of the
flight data, wherein to perform the time-series analysis of the
flight data, the computer processor is to execute the runtime
data analysis module to compare the time-series of the flight
data to a standard of a flight maneuver and output an
interpretation of the time-series of the flight data relative to
the standard of the flight maneuver.

Example 18. The apparatus according to Example 17,
wherein the standard of the flight maneuver is a first standard
of a first flight maneuver and wherein the runtime data
analysis module is to compare the time-series of the flight
data to a plurality of standard flight maneuvers, is to identify
the time-series of the flight data as corresponding to the first
standard of the first flight maneuver, and is to output an
interpretation of the time-series of the flight data relative to
the first standard of the first flight maneuver as the inter-
pretation of the time-series of the flight data relative to the
standard of the flight maneuver.

Example 19. The apparatus according to at least one of
Example 17 to Example 18, wherein the interpretation of the
time-series of the flight data relative to the standard of the
flight maneuver comprises a comparison of the time-series
of the flight data relative to at least one of a plurality of
elements of the standard of the flight maneuver.

Example 20. The apparatus according to at least one of
Example 17 to Example 19, wherein the comparison of the
time-series of the flight data relative to at least one of the
plurality of elements of the standard of the flight maneuver
comprises an extent to which the time-series of the flight
data conformed to the at least one of the plurality of
elements of the standard of the flight maneuver.

Example 21. The apparatus according to at least one of
Example 17 to Example 20, wherein the runtime data
analysis module comprises a recurrent neural network.

Example 22. The apparatus according to at least one of
Example 17 to Example 21, wherein the recurrent neural
network comprises a long short-term memory architecture.

Example 23. The apparatus according to at least one of
Example 17 to Example 22, wherein the long short-term
memory architecture comprises a plurality of neurons,
wherein the plurality of neurons comprise a cell, an input
gate, an output gate, and a forget gate.
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Example 24. The apparatus according to at least one of
Example 17 to Example 23, wherein the long short-term
memory architecture is to prevent a vanishing gradient.

Example 25. An apparatus to train a neural network to
obtain a flight data through visual analysis of a flight
instrument comprising: a computer processor and a memory;
a neural training module in the memory to train the neural
network to obtain the flight data through visual analysis of
the flight instrument, wherein to train the neural network to
obtain the flight data through visual analysis of the flight
instrument, the neural training module is to provide the
neural network with a plurality of images, wherein the
plurality of images comprise a flight instrument, is to train
the neural network to identify an object comprising the flight
instrument in at least a portion of the plurality of images, and
is to train the neural network to recognize the flight data in
the object comprising the flight instrument.

Example 26. The apparatus according to Example 25,
wherein the neural network comprises an object detection
neural network.

Example 27. The apparatus according to one or more of
Example 25 to Example 26, wherein the object detection
neural network comprises a convolutional neural network.

Example 28. The apparatus according to one or more of
Example 25 to Example 27, wherein the neural network is
to be performed by a runtime data capture module, wherein
the runtime data capture module is to perform the neural
network to obtain the flight data through visual analysis of
the flight instrument.

Example 29. An apparatus to train a neural network to
perform a time-series analysis of flight data comprising: a
computer processor and a memory; a neural training module
in the memory, wherein to train the neural network to
perform the time-series analysis of flight data, the neural
training module is to provide the neural network with a time
series flight data, is to train the neural network to compare
the time series flight data to a standard of a flight maneuver,
and is to train the neural network to output an interpretation
of the time-series flight data relative to the standard of the
flight maneuver.

Example 30. The apparatus according to Example 29
(Example 29), wherein the neural network comprises a
recurrent neural network.

Example 31. The apparatus according to at least one of
Example 29 to Example 30, wherein the recurrent neural
network comprises a long short-term memory architecture.

Example 32. The apparatus according to at least one of
Example 29 to Example 31, wherein the long short-term
memory architecture comprises a plurality of neurons,
wherein the plurality of neurons comprise a cell, an input
gate, an output gate, and a forget gate.

Example 33. The apparatus according to at least one of
Example 29 to Example 32, wherein the neural network is
to be performed by a runtime data analysis module, wherein
the runtime data analysis module is to perform the neural
network to perform the time-series analysis of flight data.

Example 34. A method to obtain a flight data through
visual analysis of a flight instrument comprising: with a
computer processor and a memory, obtaining the flight data
through visual analysis of the flight instrument, wherein
obtaining flight data through visual analysis of the flight
instrument comprises the computer processor and memory
obtaining an image of the flight instrument, identifying the
flight instrument in the image, determining the flight data
from the flight instrument in the image and to thereby obtain
the flight data through visual analysis of the flight instru-
ment.
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Example 35. The method according to Example 34 or
another Example or example herein, further comprising a
camera, wherein the computer processor and memory is to
control the camera is to capture the image of the flight
instrument.

Example 36. The method according to at least one of
Example 34 to Example 35 or another Example or example
herein, wherein determining the flight data from the flight
instrument in the image comprises processing the image
with an object detection neural network to identify the flight
instrument in the image and to determine the flight data from
the flight instrument in the image.

Example 37. The method according to at least one of
Example 34 to Example 36 or another Example or example
herein, wherein determining the flight data from the flight
instrument in the image further comprises performing a
perspective transformation of the image and identifying the
flight instrument in the perspective transformation of the
image.

Example 38. The method according to at least one of
Example 34 to Example 37 or another Example or example
herein, wherein the flight instrument comprises a fiducial
marker and wherein performing the perspective transforma-
tion of the image further comprises using the fiducial marker
to aid the perspective transformation of the image.

Example 39. The method according to at least one of
Example 34 to Example 38 or another Example or example
herein, wherein the perspective transformation comprises an
affine or bi-linear transformation.

Example 40. The method according to at least one of
Example 34 to Example 39 or another Example or example
herein, wherein the object detection neural network com-
prises a convolutional neural network.

Example 41. The method according to at least one of
Example 34 to Example 40 or another Example or example
herein, wherein the convolutional neural network comprises
an input, a backbone, a neck, and a head.

Example 42. The method according to at least one of
Example 34 to Example 41 or another Example or example
herein, further comprising sizing or reshaping the image to
match an input size of the object detection neural network.

Example 43. The method according to at least one of
Example 34 to Example 42 or another Example or example
herein, further comprising converting the image into a
vector.

Example 44. The method according to at least one of
Example 34 to Example 43, wherein processing the image
with the object detection neural network to identify the flight
instrument in the image and determining the flight data from
the flight instrument in the image, further comprises iden-
tifying one or more objects in the image, identifying the
flight instrument as a flight instrument object among the one
or more objects in the image, and identifying the flight data
as a flight data value object in the flight instrument object.

Example 45. The method according to at least one of
Example 34 to Example 44, further comprising obtaining a
comparative data from a flight data sensor and validating the
flight data relative to the comparative flight data obtained
from the flight data sensor.

Example 46. The method according to at least one of
Example 34 to Example 45, wherein the flight data sensor
comprises at least one of an inertial measurement unit
(“IMU”), an altimeter, a global positioning system (“GPS”)
receiver, or an inclinometer.

Example 47. The method according to at least one of
Example 34 to Example 46, wherein validating the flight
data relative to the comparative flight data comprises pro-
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cessing a time-series of the flight data and a time-series of
the comparative flight data in a Kalman filter and rejecting
either a portion of the time-series of flight data or of the
time-series of the comparative flight data which is outside of
a confidence interval.

Example 48. The method according to at least one of
Example 34 to Example 47, further comprising, with the
computer processor and memory, performing an analysis of
a time-series of the flight data.

Example 49. A method to perform an analysis of a
time-series of a flight data comprising: with a computer
processor and a memory, performing an analysis of the
time-series of the flight data, wherein performing the time-
series analysis of the flight data comprises comparing the
time-series of the flight data to a standard of a flight
maneuver and preparing an interpretation of the time-series
of the flight data relative to the standard of the flight
maneuver.

Example 50. The method according to Example 49 (Ex-
ample 49), wherein the standard of the flight maneuver is a
first standard of a first flight maneuver and further compris-
ing comparing the time-series of the flight data to a plurality
of standard flight maneuvers, identifying the time-series of
the flight data as corresponding to the first standard of the
first flight maneuver, comparing the time-series of the flight
data to the first standard of the first flight maneuver, and
preparing an interpretation of the time-series of the flight
data relative to the first standard of the first flight maneuver
as the interpretation of the time-series of the flight data
relative to the standard of the flight maneuver.

Example 51. The method according to at least one of
Example 49 to Example 50, wherein the interpretation of the
time-series of the flight data relative to the standard of the
flight maneuver comprises a comparison of the time-series
of the flight data relative to at least one of a plurality of
elements of the standard of the flight maneuver.

Example 52. The method according to at least one of
Example 49 to Example 51, wherein the comparison of the
time-series of the flight data relative to at least one of the
plurality of elements of the standard of the flight maneuver
comprises determining an extent to which the time-series of
the flight data conformed to the at least one of the plurality
of elements of the standard of the flight maneuver.

Example 53. The method according to at least one of
Example 49 to Example 52, wherein performing the analysis
of'the time-series of the flight data comprises performing the
analysis of the time-series of the flight data with a recurrent
neural network.

Example 54. The method according to at least one of
Example 49 to Example 53, wherein the recurrent neural
network comprises a long short-term memory architecture.

Example 55. The method according to at least one of
Example 49 to Example 54, wherein the long short-term
memory architecture comprises a plurality of neurons,
wherein the plurality of neurons comprise a cell, an input
gate, an output gate, and a forget gate.

Example 56. The method according to at least one of
Example 49 to Example 55, wherein the long short-term
memory architecture is to prevent a vanishing gradient.

Example 57. An method to train a neural network to
obtain a flight data through visual analysis of a flight
instrument comprising: with a computer processor and a
memory, providing the neural network with a plurality of
images, wherein the plurality of images comprise a flight
instrument, training the neural network to identify an object
comprising the flight instrument in at least a portion of the
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plurality of images, and training the neural network to
recognize the flight data in the object comprising the flight
instrument.

Example 58. The method according to Example 57,
wherein the neural network comprises an object detection
neural network.

Example 59. The method according to one or more of
Example 57 to Example 58, wherein the object detection
neural network comprises a convolutional neural network.

Example 60. The method according to one or more of
Example 57 to Example 59, further comprising outputting
the flight data recognized by the neural network.

Example 61. An method to train a neural network to
perform a time-series analysis of flight data comprising:
with a computer processor and a memory, providing the
neural network with a time series flight data, training the
neural network to compare the time series flight data to a
standard of a flight maneuver, and outputting an interpreta-
tion of the time-series flight data relative to the standard of
the flight maneuver.

Example 62. The method according to Example 61 (Ex-
ample 60), wherein the neural network comprises a recurrent
neural network.

Example 63. The method according to at least one of
Example 61 to Example 62, wherein the recurrent neural
network comprises a long short-term memory architecture.

Example 64. The method according to at least one of
Example 61 to Example 63, wherein the long short-term
memory architecture comprises a plurality of neurons,
wherein the plurality of neurons comprise a cell, an input
gate, an output gate, and a forget gate.

Example 65. The method according to at least one of
Example 61 to Example 64, wherein training the neural
network to compare the time-series flight data to the stan-
dard of the flight maneuver comprises training the neural
network to develop a categorization of portions of the
time-series flight according to the standard of the flight
maneuver and wherein outputting the interpretation of the
time-series flight data relative to the standard of the flight
maneuver comprises outputting the categorizations of por-
tions of the time-series flight according to the standard of the
flight maneuver.

Example 66. A computer apparatus for obtaining a flight
data through visual analysis of a flight instrument compris-
ing: means to obtain the flight data through visual analysis
of the flight instrument, wherein means to obtain flight data
through visual analysis of the flight instrument comprises
means to obtain an image of the flight instrument, means to
identifying the flight instrument in the image with a neural
network, means to determine the flight data from the flight
instrument in the image with the neural network and to
thereby obtain the flight data through visual analysis of the
flight instrument.

Example 67. The apparatus according to Example 66 or
another Example or example herein, further comprising a
camera and means for the apparatus to control the camera to
capture the image of the flight instrument.

Example 68. The apparatus according to at least one of
Example 66 to Example 67 or another Example or example
herein, wherein the neural network comprises an object
detection neural network and wherein means to determine
the flight data from the flight instrument in the image
comprises means to process the image with the object
detection neural network, means to identify the flight instru-
ment in the image with the object detection neural network,
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and means to determine the flight data from the flight
instrument in the image with the object detection neural
network.

Example 69. The apparatus according to at least one of
Example 66 to Example 68 or another Example or example
herein, wherein means to determine the flight data from the
flight instrument in the image further comprises means to
perform a perspective transformation of the image and
means to identify the flight instrument in the perspective
transformation of the image.

Example 70. The apparatus according to at least one of
Example 66 to Example 69 or another Example or example
herein, wherein the flight instrument comprises a fiducial
marker and wherein means to perform the perspective
transformation of the image further comprises means to use
the fiducial marker to aid the perspective transformation of
the image.

Example 71. The apparatus according to at least one of
Example 66 to Example 70 or another Example or example
herein, wherein the perspective transformation comprises an
affine or bi-linear transformation.

Example 72. The apparatus according to at least one of
Example 66 to Example 71 or another Example or example
herein, wherein the object detection neural network com-
prises a convolutional neural network.

Example 73. The apparatus according to at least one of
Example 66 to Example 72 or another Example or example
herein, wherein the convolutional neural network comprises
means for an input, a backbone, a neck, and a head.

Example 74. The apparatus according to at least one of
Example 66 to Example 73 or another Example or example
herein, further comprising means to size or reshaping the
image to match an input size of the object detection neural
network.

Example 75. The apparatus according to at least one of
Example 66 to Example 74 or another Example or example
herein, further comprising means to convert the image into
a vector.

Example 76. The apparatus according to at least one of
Example 66 to Example 75, wherein means to process the
image with the object detection neural network to identify
the flight instrument in the image and means to determine
the flight data from the flight instrument in the image, further
comprises means to identify one or more objects in the
image, identify the flight instrument as a flight instrument
object among the one or more objects in the image, and
identify the flight data as a flight data value object in the
flight instrument object.

Example 77. The apparatus according to at least one of
Example 66 to Example 76, further comprising means to
obtain a comparative data from a flight data sensor and
means to validate the flight data relative to the comparative
flight data obtained from the flight data sensor.

Example 78. The apparatus according to at least one of
Example 66 to Example 77, wherein the flight data sensor
comprises at least one of an inertial measurement unit
(“IMU”), an altimeter, a global positioning system (“GPS”)
receiver, or an inclinometer.

Example 79. The apparatus according to at least one of
Example 66 to Example 78, wherein means to validate the
flight data relative to the comparative flight data comprises
means to process a time-series of the flight data and a
time-series of the comparative flight data in a Kalman filter
and reject either a portion of the time-series of flight data or
of the time-series of the comparative flight data which is
outside of a confidence interval.
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Example 80. The apparatus according to at least one of
Example 66 to Example 79, wherein the neural network is
an object detection neural network and further comprising
means to perform an analysis of a time-series of the flight
data with a recurrent neural network.

Example 81. A computer apparatus to perform an analysis
of a time-series of a flight data comprising: means to
perform an analysis of the time-series of the flight data with
a neural network, wherein means to perform the time-series
analysis of the flight data with the neural network comprises
means to compare the time-series of the flight data to a
standard of a flight maneuver and means to prepare an
interpretation of the time-series of the flight data relative to
the standard of the flight maneuver.

Example 82. The apparatus according to Example 81,
wherein the standard of the flight maneuver is a first standard
of a first flight maneuver and further comprising means to
compare the time-series of the flight data to a plurality of
standard flight maneuvers, identify the time-series of the
flight data as corresponding to the first standard of the first
flight maneuver, compare the time-series of the flight data to
the first standard of the first flight maneuver, and prepare an
interpretation of the time-series of the flight data relative to
the first standard of the first flight maneuver as the inter-
pretation of the time-series of the flight data relative to the
standard of the flight maneuver.

Example 83. The apparatus according to at least one of
Example 81 to Example 82, wherein the interpretation of the
time-series of the flight data relative to the standard of the
flight maneuver comprises a comparison of the time-series
of the flight data relative to at least one of a plurality of
elements of the standard of the flight maneuver.

Example 84. The apparatus according to at least one of
Example 81 to Example 83, wherein the comparison of the
time-series of the flight data relative to at least one of the
plurality of elements of the standard of the flight maneuver
comprises means to determine an extent to which the
time-series of the flight data conformed to the at least one of
the plurality of elements of the standard of the flight maneu-
ver.

Example 85. The apparatus according to at least one of
Example 81 to Example 84, wherein the neural network
comprises a recurrent neural network.

Example 86. The apparatus according to at least one of
Example 81 to Example 85, wherein the recurrent neural
network comprises a long short-term memory architecture.

Example 87. The apparatus according to at least one of
Example 81 to Example 86, wherein the long short-term
memory architecture comprises a plurality of neurons,
wherein the plurality of neurons comprise a cell, an input
gate, an output gate, and a forget gate.

Example 88. The apparatus according to at least one of
Example 81 to Example 87, wherein the long short-term
memory architecture is to prevent a vanishing gradient.

Example 89. A computer apparatus to train a neural
network to obtain a flight data through visual analysis of a
flight instrument comprising: means to provide the neural
network with a plurality of images, wherein the plurality of
images comprise a flight instrument, means to train the
neural network to identify an object comprising the flight
instrument in at least a portion of the plurality of images, and
train the neural network to recognize the flight data in the
object comprising the flight instrument.

Example 90. The apparatus according to Example 89,
wherein the neural network comprises an object detection
neural network.
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Example 91. The apparatus according to one or more of
Example 89 to Example 90, wherein the object detection
neural network comprises a convolutional neural network.

Example 92. The apparatus according to one or more of
Example 89 to Example 91, further comprising means to
output the flight data recognized by the neural network.

Example 93. A computer apparatus to train a neural
network to perform a time-series analysis of flight data
comprising: means to provide the neural network with a time
series flight data, train the neural network to compare the
time series flight data to a standard of a flight maneuver, and
output an interpretation of the time-series flight data relative
to the standard of the flight maneuver.

Example 94. The apparatus according to Example 93,
wherein the neural network comprises a recurrent neural
network.

Example 95. The apparatus according to at least one of
Example 93 to Example 94, wherein the recurrent neural
network comprises a long short-term memory architecture.

Example 96. The apparatus according to at least one of
Example 93 to Example 95, wherein the long short-term
memory architecture comprises a plurality of neurons,
wherein the plurality of neurons comprise a cell, an input
gate, an output gate, and a forget gate.

Example 97. The apparatus according to at least one of
Example 93 to Example 96, wherein means to train the
neural network to compare the time-series flight data to the
standard of the flight maneuver comprises means to train the
neural network to develop a categorization of portions of the
time-series flight according to the standard of the flight
maneuver and wherein means to output the interpretation of
the time-series flight data relative to the standard of the flight
maneuver comprises means to output the categorizations of
portions of the time-series flight according to the standard of
the flight maneuver.

Example 98. One or more computer-readable media com-
prising instructions that cause a computer device, in
response to execution of the instructions by a processor of
the computer device, to: obtain a flight data through visual
analysis of a flight instrument, wherein obtain flight data
through visual analysis of the flight instrument comprises
obtain an image of the flight instrument, identifying the
flight instrument in the image with a neural network, deter-
mine the flight data from the flight instrument in the image
with the neural network and to thereby obtain the flight data
through visual analysis of the flight instrument.

Example 99. The computer-readable media according to
Example 98 or another Example or example herein, wherein
the instructions are further to cause the computer device to
control a camera and to capture the image of the flight
instrument with the camera.

Example 100. The computer-readable media according to
at least one of Example 98 to Example 99 or another
Example or example herein, wherein the neural network
comprises an object detection neural network and wherein
the instructions are further to cause the computer device to
process the image with the object detection neural network,
to identify the flight instrument in the image with the object
detection neural network, and to determine the flight data
from the flight instrument in the image with the object
detection neural network.

Example 101. The computer-readable media according to
at least one of Example 98 to Example 100 or another
Example or example herein, wherein the instructions are
further to cause the computer device to perform a perspec-
tive transformation of the image and to identify the flight
instrument in the perspective transformation of the image.
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Example 102. The computer-readable media according to
at least one of Example 98 to Example 101 or another
Example or example herein, wherein the flight instrument
comprises a fiducial marker and wherein to perform the
perspective transformation of the image further comprises to
cause the computer device to use the fiducial marker to aid
the perspective transformation of the image.

Example 103. The computer-readable media according to
at least one of Example 98 to Example 102 or another
Example or example herein, wherein the perspective trans-
formation comprises an affine or bi-linear transformation.

Example 104. The computer-readable media according to
at least one of Example 98 to Example 103 or another
Example or example herein, wherein the object detection
neural network comprises a convolutional neural network.

Example 105. The computer-readable media according to
at least one of Example 98 to Example 104 or another
Example or example herein, wherein the convolutional
neural network comprises means for an input, a backbone, a
neck, and a head.

Example 106. The computer-readable media according to
at least one of Example 98 to Example 105 or another
Example or example herein, wherein the instructions are
further to cause the computer device to size or reshaping the
image to match an input size of the object detection neural
network.

Example 107. The computer-readable media according to
at least one of Example 98 to Example 106 or another
Example or example herein, wherein the instructions are
further to cause the computer device to convert the image
into a vector.

Example 108. The computer-readable media according to
at least one of Example 98 to Example 107, wherein to
process the image with the object detection neural network
to identify the flight instrument in the image and means to
determine the flight data from the flight instrument in the
image, further comprises the instructions are further to cause
the computer device to identify one or more objects in the
image, identify the flight instrument as a flight instrument
object among the one or more objects in the image, and
identify the flight data as a flight data value object in the
flight instrument object.

Example 109. The computer-readable media according to
at least one of Example 98 to Example 108, wherein the
instructions are further to cause the computer device to
obtain a comparative data from a flight data sensor and to
validate the flight data relative to the comparative flight data
obtained from the flight data sensor.

Example 110. The computer-readable media according to
at least one of Example 98 to Example 109, wherein the
flight data sensor comprises at least one of an inertial
measurement unit (“IMU”), an altimeter, a global position-
ing system (“GPS”) receiver, or an inclinometer.

Example 111. The computer-readable media according to
at least one of Example 98 to Example 110, wherein to
validate the flight data relative to the comparative flight data
comprises the instructions are to cause the computer device
to process a time-series of the flight data and a time-series
of the comparative flight data in a Kalman filter and reject
either a portion of the time-series of flight data or of the
time-series of the comparative flight data which is outside of
a confidence interval.

Example 112. The computer-readable media according to
at least one of Example 98 to Example 111, wherein the
neural network is an object detection neural network and
wherein the instructions are further to cause the computer
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device to perform an analysis of a time-series of the flight
data with a recurrent neural network.

Example 113. One or more computer-readable media
comprising instructions that cause a computer device, in
response to execution of the instructions by a processor of
the computer device, to: perform an analysis of a time-series
of'a flight data with a neural network, wherein to perform the
time-series analysis of the flight data with the neural net-
work comprises the instructions are to cause the computer
device to compare the time-series of the flight data to a
standard of a flight maneuver and to prepare an interpreta-
tion of the time-series of the flight data relative to the
standard of the flight maneuver.

Example 114. The computer-readable media according to
Example 113, wherein the standard of the flight maneuver is
a first standard of a first flight maneuver and wherein the
instructions are further to cause the computer device to
compare the time-series of the flight data to a plurality of
standard flight maneuvers, identify the time-series of the
flight data as corresponding to the first standard of the first
flight maneuver, compare the time-series of the flight data to
the first standard of the first flight maneuver, and prepare an
interpretation of the time-series of the flight data relative to
the first standard of the first flight maneuver as the inter-
pretation of the time-series of the flight data relative to the
standard of the flight maneuver.

Example 115. The computer-readable media according to
at least one of Example 113 to Example 114, wherein to
prepare the interpretation of the time-series of the flight data
relative to the standard of the flight maneuver comprises the
instructions are further to cause the computer device to
compare the time-series of the flight data to at least one of
aplurality of elements of the standard of the flight maneuver.

Example 116. The computer-readable media according to
at least one of Example 113 to Example 115, wherein to
compare the time-series of the flight data to at least one of
the plurality of elements of the standard of the flight maneu-
ver comprises the instructions are further to cause the
computer device to determine an extent to which the time-
series of the flight data conformed to the at least one of the
plurality of elements of the standard of the flight maneuver.

Example 117. The computer-readable media according to
at least one of Example 113 to Example 116, wherein the
neural network comprises a recurrent neural network.

Example 118. The computer-readable media according to
at least one of Example 113 to Example 117, wherein the
recurrent neural network comprises a long short-term
memory architecture.

Example 119. The computer-readable media according to
at least one of Example 113 to Example 118, wherein the
long short-term memory architecture comprises a plurality
of neurons, wherein the plurality of neurons comprise a cell,
an input gate, an output gate, and a forget gate.

Example 120. The computer-readable media according to
at least one of Example 113 to Example 119, wherein the
long short-term memory architecture is to prevent a vanish-
ing gradient.

Example 121. One or more computer-readable media
comprising instructions that cause a computer device, in
response to execution of the instructions by a processor of
the computer device, to train a neural network to obtain a
flight data through visual analysis of a flight instrument,
wherein to train the neural network to obtain the flight data
through visual analysis of the flight instrument comprises
the instructions are further to cause the computer device to
provide the neural network with a plurality of images,
wherein the plurality of images comprise a flight instrument,
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to train the neural network to identify an object comprising
the flight instrument in at least a portion of the plurality of
images, and to train the neural network to recognize the
flight data in the object comprising the flight instrument.

Example 122. The computer-readable media according to
Example 121, wherein the neural network comprises an
object detection neural network.

Example 123. The computer-readable media according to
one or more of Example 121 to Example 122, wherein the
object detection neural network comprises a convolutional
neural network.

Example 124. The computer-readable media according to
one or more of Example 121 to Example 123, wherein the
instructions are further to cause the computer device to
output the flight data recognized by the neural network.

Example 125. One or more computer-readable media
comprising instructions that cause a computer device, in
response to execution of the instructions by a processor of
the computer device, to: train a neural network to perform a
time-series analysis of flight data, wherein to train the neural
network to perform the time-series analysis of flight data
comprises to cause the computer device to provide the
neural network with a time series flight data, train the neural
network to compare the time series flight data to a standard
of a flight maneuver, and to output an interpretation of the
time-series flight data relative to the standard of the flight
maneuver.

Example 126. The computer-readable media according to
Example 125, wherein the neural network comprises a
recurrent neural network.

Example 127. The computer-readable media according to
at least one of Example 125 to Example 126, wherein the
recurrent neural network comprises a long short-term
memory architecture.

Example 128. The computer-readable media according to
at least one of Example 125 to Example 127, wherein the
long short-term memory architecture comprises a plurality
of neurons, wherein the plurality of neurons comprise a cell,
an input gate, an output gate, and a forget gate.

Example 129. The computer-readable media according to
at least one of Example 125 to Example 128, wherein to train
the neural network to compare the time-series flight data to
the standard of the flight maneuver comprises the instruc-
tions are further to cause the computer device to train the
neural network to develop a categorization of portions of the
time-series flight according to the standard of the flight
maneuver and to output the interpretation of the time-series
flight data relative to the standard of the flight maneuver
comprises the instructions are further to cause the computer
device to output the categorizations of portions of the
time-series flight according to the standard of the flight
maneuver.

The invention claimed is:

1. An apparatus to obtain flight data for pilot flight
maneuver training through visual analysis of a flight instru-
ment comprising:

a computer-vision-implementing camera with sightlines
to a part of an instrument panel that includes the flight
instrument in the aircraft cockpit and having an
onboard real time flight information machine learning
chipset, a computer processor a memory, and a runtime
data capture module in the memory,

wherein to obtain the flight data for the pilot flight
maneuver training through visual analysis of the flight
instrument, the computer-vision-implementing camera
processor is to execute the runtime data capture module
to obtain an image of the flight instrument, to process
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the image with an object detection neural network to
identify the flight instrument in the image and perform
a perspective transformation of the image using one or
more fiducial markers in the image, to determine the
flight data from the flight instrument in the image and
to thereby obtain the flight data through real time
device-implemented visual analysis of the flight instru-
ment without an electrical signal from the flight instru-
ment and without an electrical signal from any flight
data recorder,

wherein the flight data are obtained from real flight

environment, the flight data are used for training the
object detection neural network comprising time-series
data of real flight environment comprising real flight
instrument, the flight data comprises of standard flight
maneuver data, obtained from real flight environment,
to be compared with the flight data for the pilot flight
maneuver training.

2. The apparatus according to claim 1, wherein to process
the image with the object detection neural network to
identify the flight instrument in the image and determine the
flight data from the flight instrument in the image, the
runtime data capture module is to identify one or more
objects in the image, is to identify the flight instrument as a
flight instrument object among the one or more objects in the
image, and is to identify the flight data as a flight data value
object in the flight instrument object.

3. The apparatus according to claim 1, wherein the
runtime data capture module is further to validate the flight
data relative to a comparative flight data obtained in real
time from a flight data sensor.

4. The apparatus according to claim 1, further comprising
a runtime data analysis module in the memory to perform an
analysis of a time-series of the flight data, wherein the
runtime data analysis module comprises a recurrent neural
network to perform the analysis of the time-series of the
flight data.

5. The apparatus according to claim 4, wherein to perform
the time-series analysis of the flight data, the computer
processor is to execute the runtime data analysis module and
the recurrent neural network to compare the time-series of
the flight data to a standard of a flight maneuver and output
an interpretation of the time-series of the flight data relative
to the standard of the flight maneuver.

6. A method comprising:

obtaining a flight data for pilot flight maneuver training

through visual analysis of a flight instrument with a
computer-vision-implementing camera with sightlines
to a part of an instrument panel that includes the flight
instrument in the aircraft cockpit and having an
onboard real time flight information machine learning
chipset, a computer processor and a memory, obtaining
the flight data through visual analysis of the flight
instrument, wherein obtaining flight data for flight
training through visual analysis of the flight instrument
comprises the computer processor and memory obtain-
ing an image of the flight instrument, identifying the
flight instrument in the image, determining the flight
data from the flight instrument in the image and to
thereby obtain the flight data through visual analysis of
the flight instrument,

wherein determining the flight data from the flight instru-

ment in the image comprises processing the image with
an object detection neural network to identify the flight
instrument in the image and performing a perspective
transformation of the image using one or more fiducial
markers in the image, and to determine the flight data
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from the flight instrument in the image without an
electrical signal from the flight instrument and without
an electrical signal from any flight data recorder,

wherein the flight data are obtained from real flight
environment, the flight data are used for training the
object detection neural network comprising time-series
data of real flight environment comprising real flight
instrument, the flight data comprises of standard flight
maneuver data, obtained from real flight environment,
to be compared with the flight data for the pilot flight
maneuver training.

7. The method according to claim 6, wherein processing
the image with the object detection neural network to
identify the flight instrument in the image and determining
the flight data from the flight instrument in the image, further
comprises identifying one or more objects in the image,
identifying the flight instrument as a flight instrument object
among the one or more objects in the image, and identifying
the flight data as a flight data value object in the flight
instrument object.

8. The method according to claim 6, further comprising
obtaining a comparative data from a flight data sensor and
validating the flight data relative to the comparative flight
data obtained in real time from the flight data sensor,
wherein validating the flight data relative to the comparative
flight data comprises processing a time-series of the flight
data and a time-series of the comparative flight data in a
Kalman filter and rejecting either a portion of the time-series
of flight data or of the time-series of the comparative flight
data which is outside of a confidence interval.

9. The method according to claim 6, further comprising,
performing an analysis of a time-series of the flight data,
wherein performing the analysis of the time-series of the
flight data comprises performing the analysis of the time-
series of the flight data with a recurrent neural network.

10. The method according to claim 9, wherein performing
the time-series analysis of the flight data comprises com-
paring the time-series of the flight data to a standard of a
flight maneuver and preparing an interpretation of the time-
series of the flight data relative to the standard of the flight
maneuver.

11. The method according to claim 10, wherein the
interpretation of the time-series of the flight data relative to
the standard of the flight maneuver comprises a comparison
of the time-series of the flight data relative to at least one of
aplurality of elements of the standard of the flight maneuver.

12. A computer apparatus for obtaining a flight data for
pilot flight maneuver training through visual analysis of a
flight instrument comprising:

means to obtain an image of the flight instrument through

a computer-vision-implementing camera with sight-
lines to a part of an instrument panel that includes the
flight instrument in the aircraft cockpit and having an
onboard real time flight information machine learning
chipset, means to identifying the flight instrument in
the image with a neural network,

means to performing a perspective transformation of the

image using one or more fiducial markers,

means to determine the flight data from the flight instru-

ment in the image with a neural network and to thereby
obtain the flight data through visual analysis of the
flight instrument, wherein the flight data is for the pilot
flight maneuver training, and the computer-vision cam-
era processes the image with the neural network to
identify the flight instrument in the image where the
perspective transformation is perform on, to determine
the flight data from the flight instrument in the image
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and to thereby obtain the flight data through real time
device-implemented visual analysis of the flight instru-
ment without an electrical signal from the flight instru-
ment and without an electrical signal from any flight
data recorder,

wherein the flight data are obtained from real flight

environment, the flight data are used for training the
object detection neural network comprising time-series
data of real flight environment comprising real flight
instrument, the flight data comprises of standard flight
maneuver, data obtained from real flight environment,
to be compared with the flight data for the pilot flight
maneuver training.

13. The apparatus according to claim 12, further com-
prising a camera and means for the apparatus to control the
camera to capture the image of the flight instrument.

14. The apparatus according to claim 12, wherein the
neural network comprises an object detection neural net-
work and wherein means to determine the flight data from
the flight instrument in the image comprises means to
process the image with the object detection neural network,
means to identify the flight instrument in the image with the
object detection neural network, and means to determine the
flight data from the flight instrument in the image with the
object detection neural network.

15. The apparatus according to claim 12, further com-
prising means to obtain a comparative data from a flight data
sensor and means to validate the flight data relative to the
comparative flight data obtained in real time from the flight
data sensor.
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16. The apparatus according to claim 12, wherein the
neural network is an object detection neural network and
further comprising means to perform an analysis of a
time-series of the flight data with a recurrent neural network.

17. The apparatus according to claim 16, wherein means
to perform the time-series analysis of the flight data with the
neural network comprises means to compare the time-series
of the flight data to a standard of a flight maneuver and
means to prepare an interpretation of the time-series of the
flight data relative to the standard of the flight maneuver.

18. The apparatus according to claim 16, wherein the
standard of the flight maneuver is a first standard of a first
flight maneuver and further comprising means to compare
the time-series of the flight data to a plurality of standard
flight maneuvers, identify the time-series of the flight data as
corresponding to the first standard of the first flight maneu-
ver, compare the time-series of the flight data to the first
standard of the first flight maneuver, and prepare an inter-
pretation of the time-series of the flight data relative to the
first standard of the first flight maneuver as the interpretation
of' the time-series of the flight data relative to the standard of
the flight maneuver.

19. The method according to claim 6, including labeling
the flight data using a long short-term memory architecture
recurrent neural network (“LSTM RNN™) that has been
trained relative to one or more standard flight maneuver
training data records.
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